Selasa, 11 Oktober 2011

EXPONENTIAL AND LOGARITHMIC FUNCTIONS (Part-3)

─►Properties of Logarithms


• LOG of 1 is 0: Given the logarithmic function f(x) = LOGax, f(1) = 0.In other words
    LOGa1 = 0 for any legitimate exponential base a.
LOGa of a is 1: Given the logarithmic function f(x) = LOGax, f(a) = 1.In other words,
    LOGa a = 1 for any legitimate exponential base a.
Product Rule for Logs: Given the logarithmic function f(x) = LOGax, f(UV) = f(U) + f(V).In other words,
    LOGa(UV) = LOGaU + LOGaV for any legitimate exponential base a.
Quotient Rule for Logs: Given the logarithmic function f(x) = LOGax, f(U/V) =
f(U) - f(V).In other words,
 for any legitimate exponential base a.
  Power Rule for Logs: Given the logarithmic function f(x) = LOGax, f(xN) =
Nf(x).In other words, LOGa(xN) = NLOGax.
  Change of Base Rule for Logs: Given the logarithmic function f(x) = LOGax, it
is true, for any legitimate bases a and b, that






Tidak ada komentar:

Posting Komentar