• LOG of 1 is 0: Given the logarithmic function f(x) = LOGax, f(1) = 0.In other words
LOGa1 = 0 for any legitimate exponential base a.
• LOGa of a is 1: Given the logarithmic function f(x) = LOGax, f(a) = 1.In other words,
LOGa a = 1 for any legitimate exponential base a.
• Product Rule for Logs: Given the logarithmic function f(x) = LOGax, f(UV) = f(U) + f(V).In other words,
LOGa(UV) = LOGaU + LOGaV for any legitimate exponential base a.
• Quotient Rule for Logs: Given the logarithmic function f(x) = LOGax, f(U/V) =
f(U) - f(V).In other words,
for any legitimate exponential base a.
• Power Rule for Logs: Given the logarithmic function f(x) = LOGax, f(xN) =
N • f(x).In other words, LOGa(xN) = N • LOGax.
• Change of Base Rule for Logs: Given the logarithmic function f(x) = LOGax, it
is true, for any legitimate bases a and b, that
Tidak ada komentar:
Posting Komentar